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Dirty   Dull   Dangerous

Psyche 
mission



Can a crop disease be detected before 
it spreads across an agricultural field?

Solve grand challenges (food, 
water, environment) with robotics 
technology

Motivation

�4

Is there a toxinogenic algae bloom close 
to the coast, and will it hit the beach 
during a busy holiday weekend? 



Interests 
• Robotics, machine learning, autonomous systems, precision 

agriculture, environmental monitoring — extreme environments  
• Closing the loop on information collection  

• Systems and algorithms that efficiently observe properties of 
interest through both in-situ and ex-situ labeling of samples 

• Adaptivity and opportunism in sampling missions 

• Performance guarantees



The Annotation Game

Chelsea Scott, Ramon Arrowsmith 

Hannah Kerner

Sampling

Analysis

In-situ Ex-situ

measurement specimen

features big-data
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The water planet 



Ocean life - Heterogeneous and Dynamic

6 km
• Sparse

• Mobile (advection)

• Large spatio-temporal extent (km-days)

• Variable correlation scales

• Multi-dimensional measurements

3 km

North Monterey Bay
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Sampling Marine Blooms

Detect Heterogeneous,
Multi-scale

Remote-sensing, 
land based HF Radar

Track Mobile, 
coherent

Lagrangian surveys 
using GPS tracked 

drifters - tag and track

Sample Online,
adaptive

Data-driven acquisition 
of biological samples

Deployment
planning

Autonomous 
sampling

Goal Characteristics Approach

Oceanographic 
Decision Support 
System (ODSS) 

Web-based
Enables marine scientists as 
end-users, helps guide asset 
use

Tools

Macro

Micro
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Algae bloom detection and advection over 2 days 
using remote sensing and hourly HF radar data 

J. Das et. al, "Towards Marine Bloom Trajectory Prediction for 
AUV Mission Planning", In IEEE International Conference on 
Robotics and Automation, May 2010.
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AUV carrying out Lagrangian surveys in a patch of 
water tagged with a GPS-tracked drifter,

Sampling Marine Blooms

Detect Heterogeneous,
Multi-scale
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land based HF Radar

Track Mobile, 
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System (ODSS) 

Web-based
Enables marine scientists as 
end-users, helps guide asset 
use

Tools

Macro

Micro

Algae bloom detection and advection over 2 days 
using remote sensing and hourly HF radar data 

J. Das et. al, "Coordinated Sampling of Dynamic 
Oceanographic Features with AUVs and Drifters", in 
International Journal of Robotics Research (IJRR), 2012. 

J. Das et. al, "Towards Marine Bloom Trajectory Prediction for 
AUV Mission Planning", In IEEE International Conference on 
Robotics and Automation, May 2010.
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Autonomous Underwater Vehicles (AUVs)

• Sensor suite to log 
scientific data, water 
sample collection 
system

• Limited communication

Slocum Glider

Dorado AUV
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Autonomous Underwater Vehicles (AUVs)

• Sensor suite to log 
scientific data, water 
sample collection 
system

• Limited communication

~35 km

Monterey bay
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K. Rajan, "Towards Mixed-initiative, Multi-robot Field Experiments: Design, Deployment, and Lessons Learned", In IEEE/RSJ 
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Features with Underwater Vehicles and Drifters”, in International Journal of Robotics Research, Vol. 31, p. 626-646, April 2012.
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Limitations of In-situ 
Sampling

lab 
analysis

in-situ

organism abundance
environmental 

context

<temperature, salinity,...>

MBARI’s
Dorado 

AUV

Ten 1.8 L gulpers
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Organism 
niche

 model

Acquiring Water Samples 
Adaptively

Adaptive water sampling
Lab 

analysis

Sampling 
Policy

Training data (re)learn organism abundance model
[temp, salinity,...][b]
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Probabilistic  
Regression 

Optimal stopping

Multi-armed  
Bandits

Rasmussen, 
Anderson, Elith

Ferguson ,Bateni, Babaioff,  
Zadimoghaddam

Binney, Zhang, Low,  
Krause, Srinivas

Modeling Sampling 
Policy

Online best-choice 
 19

Opportunistic
Sampling



Opportunistic Sampling

Lab analysis

Training data (re)learn organism niche model

z = [temperature, salinity,…]

...

...
k water samples

Utility function

Online best-choice

Sampling policy

[temp, salinity,...][b]
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Problem Formulation
Environmental feature vector

Training dataset

Probabilistic model
for organism abundance

AUV samples z at geographic 
locations

Bayesian sequential optimization 
:  utility function

Goal : Acquire samples that maximize utility, online

 21



Temperature

Salinity

Organism Abundance Model
Ecological/environmental niche modeling, 

species distribution/habitat modeling 
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Temperature

Salinity

Niche of 
phytoplankton

Ecological/environmental niche modeling, 
species distribution/habitat modeling 

Organism Abundance Model
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X1

X2

organism
of interest

(hidden feature)

input 
features 

in-situ measurements: 
temperature, salinity, chlorophyll fluorescence, 

backscatter, ...

niche

No geographical input 
(latitude, longitude, depth) 
 Avoids effect of oceanic 

advection

Organism Abundance Model
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Sequential Sampling

X2

X1

p*

• Organism observed from unknown 
true niche p*

• Goal: acquire high abundance 
samples for ecological studies
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p*

steps

p

• Organism observed from unknown 
true niche p*

• Goal: acquire high abundance 
samples for ecological studies

1. Robot samples from p* randomly

2. Oracle reveals organism abundance of 
samples

3. Model learns distribution p (an estimate of 
p*)

4. Sequential sampling policy uses p to 
determine new samples to acquire

5. Repeat 2 - 4

Sequential Sampling

X2

X1  26
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p*
p

Sequential Sampling

steps
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• Non-linear (expressive), probabilistic (introspective)

• K is the covariance (or Gram) matrix, generated using a kernel 
function (squared exponential for this work)

• Train model on shore - make predictions on robot, in real 
time 

Gaussian Processes 
Regression

“Gaussian Processes for Machine Learning”, C. Rasmussen and C. Williams.,The MIT Press, 2006.
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environmental 
feature vector

observed in-situ

Organism 
abundance 

model hidden feature
(biology)

Lab analysis
...

"Hierarchical Probabilistic Regression for AUV-based Adaptive Sampling of Marine Phenomena", J. Das, J. Harvey,     
F. Py, H. Vathsangam, R. Graham, K. Rajan and G. S. Sukhatme. In International Conference on Robotics and 
Automation (ICRA), May 2013.

Training data

 30

Probabilistic Model



Predict organism abundance, 
and associated uncertainty in 

real-time

"Hierarchical Probabilistic Regression for AUV-based Adaptive Sampling of Marine Phenomena", J. Das, J. Harvey,     
F. Py, H. Vathsangam, R. Graham, K. Rajan and G. S. Sukhatme. In International Conference on Robotics and 
Automation (ICRA), May 2013.

Organism 
abundance 

model

Probabilistic Model

environmental 
feature vector

observed in-situ

hidden feature
(biology)

 31



Utility function utility

environmental 
feature vector

observed in-situ

J. Das, F. Py, J. B. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A. Caron, K. Rajan, and G. S. 
Sukhatme, “Data-driven robotic sampling for marine ecosystem monitoring,” The International Journal of 
Robotics Research, vol. 34, no. 12, pp. 1435–1452, 2015.  32

Sampling Policy

next best sample to improve model?



• Maximize sum of organism abundance 
from acquired samples : reward

• Balance exploitation of known high 
valued regions, and exploration of 
unknown parts of input space

• Minimize long term regret 

Exploration-exploitation 
Tradeoff 
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• Multi-armed bandit - maximize rewards 
from unknown distributions, i.e. 
improve model locally (mean driven)

• Experiment design (active learning)  - 
improve model globally (variance 
driven)

Utility function  : 

Exploration-exploitation 
Tradeoff 
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• Upper confidence bound - 
Auer et. al (JMLR 2002)

• GP upper confidence bound 
(GP-UCB) - Srinivas et. al 
(2010)

• Minimize cumulative average 
regret over t trials 

Exploration-exploitation 
Tradeoff 

“Information-Theoretic Regret Bounds for Gaussian Process Optimization in 
the Bandit Setting”,  N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. 
IEEE Transactions on Information Theory (2012)

Increasing rate of exploration, that eventually 
stabilizes
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Batch-update GP-UCB

• Our goal : Acquire top k peaks of the 
utility function from a deployment

• Model update happens at the end of the 
deployment, i.e. in batches of k samples

 36



Utility 

z* = [temperature, salinity]

utility

environmental 
feature vector

observed in-situ

utility

Online Best-choice   
Problem

 37



Online Best-choice   
Problem

abundance (O.D.)Time

Depth (m)

Zooplankton abundance prediction for an AUV survey from 2005

surface

How to choose k samples to maximize 
the the sum of utility from all samples?
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Online Best-choice   
Problem

How to choose k samples to maximize 
the the sum of utility from all samples?

abundance (O.D.)Time

Depth (m)

Zooplankton abundance prediction for an AUV survey from 2005

surface
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Challenges

• Missing out on potential future hotspots 

• too greedy

• Coming back with few samples

•  too conservative

• Having to set thresholds

• undesirable

 40



Problem of choosing a time to 
take a particular action

Optimal  
Stopping Theory

 41



“Who Solved the Secretary Problem?“,  T. Ferguson, Statistical Science, Vol. 
4 (1989)

Hiring (or secretary) problem

• N candidates arrive for an interview i.i.d, and ranked

• Goal: choose best candidate, online

• Hiring decision irrevocable

Solution

Observe first N/e (36.7 %) candidates, hire next best

If no better candidate, hire last person

Probability of choosing best candidate = 1/e  (~36.7 %)

Optimal  
Stopping Theory
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observe sample

Hiring Problem

 44



Selecting k Candidates Online

 45

• Submodular secretary problem

• N candidates arrive for an interview, i.i.d, and rated

• Goal: choose best k candidates, online (best sum of 
rating)

• Hiring decisions irrevocable

• Solution

• Split total window into k segments 

• Apply secretary algorithm in each segment

• Guaranteed competitive-ratio of at least (1 - 1/e)/11, ~0.05



Selecting k Candidates Online

“Submodular secretary problem and extensions,” M. Bateni, M. Hajiaghayi, and M. 
Zadimoghaddam, in APPROX-RANDOM (2010)

• Submodular secretary problem

• N candidates arrive for an interview, i.i.d, and rated

• Goal: choose best k candidates, online (best sum of 
rating)

• Hiring decisions irrevocable

• Solution
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• Guaranteed competitive-ratio of at least (1 - 1/e)/11, ~0.05
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• Submodular secretary problem

• N candidates arrive for an interview, i.i.d, and rated

• Goal: choose best k candidates, online (best sum of 
rating)

• Hiring decisions irrevocable

• Solution

• Split total window into k segments 

• Apply secretary algorithm in each segment

• Guaranteed competitive-ratio of at least (1 - 1/e)/11, ~0.05

Selecting k Candidates Online

abundance 
(O.D.)

time

depth (m)

surface

“Submodular secretary problem and extensions,” M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam, 
in APPROX-RANDOM (2010)
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Workflow

z = [temperature, salinity]
...

k water samples

Online best-choice 
algorithm

Organism 
abundance 

model Utility 
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Evaluation
• Framework to test methodology on real data

• Campaign : 17 Dorado AUV deployments in 
Monterey bay over 8 days from August 2005 

• Logged in-situ - temperature, salinity, optical 
backscatter, chlorophyll fluorescence, nitrate 
conc., dissolved oxygen

• Chlorophyll fluorescence - proxy for 
phytoplankton (algal) biomass, measured by a 
fluorometer 

• Goal: Acquire simulated gulps of high 
abundance phytoplankton samples

 49



Methodology

longitude

latitude

Monterey Bay

Measured by AUV
during each deployment

•17 deployments, ~ 7 hr each
•8 days (2005)
•~ 45,000 measurements per 
deployment
•No gulps

 50



Methodology

latitude

Hidden from AUV
during the mission

Measured by AUV
during each deployment
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Methodology

latitude

++ + + +
Hidden from AUV
during the mission

Measured by AUV
during each deployment
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

pilot surveys with
random sampling,

learn initial GP 
model
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

targeted 
sampling using 
learned model

pilot surveys with
random sampling,

learn initial GP 
model
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

Update 
GP model
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

Update 
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

repeat
Update 

GP model
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Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

Campaign (repeat 100 times)
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Methodology

Campaign (repeat 100 times)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

random restarts 
(k = 10 of ~40,000 samples, 0.02%)
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Simulation Snapshot

Gulps within segments using 
submodular secretary algorithm

Gulps at 
segment-end 
for lack of 
better 
candidates (temperature)

(backscatter)

(backscatter)

Abundance meanTrue 

Predicted 

Abundance variance

AUV transect and simulated gulps Learned probabilistic 
Organism Model

 61



• Data size

• First two, previous two,  
and all deployments

• Sampling policy

• Mean, variance, GP-
UCB

• Offline vs online

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Aug 25 Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep1

Evaluation
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Evaluation

• Data size

• First two, previous two,  
and all deployments

• Sampling policy

• Mean, variance, GP-
UCB

• Offline vs online

• Regret

• Correlation coefficient

Methods Metrics
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Results (offline policy)
INIT WINDOW ALL

Regret : LOWER is better Corr. coeff. : HIGHER is better

RND M V UCB M V UCB M V UCB

INIT WINDOW ALL

Sampling
RND : random
M : mean driven
V : variance driven
UCB : GP-UCB

Data
INIT: initial 2 surveys
WINDOW : previous 2 surveys
ALL :  all surveys 

Regret - lowest median 
and variance for GP-
UCB, with all data

Corr. coefficient - GP-
UCB competitive with 
variance sampling, with 
all data

RND M V UCB M V UCB M V UCBRND M V UCB M V UCB M V UCB
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Results (online policy)
INIT WINDOW ALL

RND M V UCB M V UCB M V UCB
RND M V UCB M V UCB M V UCB

Regret : LOWER is better Corr. coeff. : HIGHER is better

RND M V UCB M V UCB M V UCB
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INIT WINDOW ALL

Sampling
RND : random
M : mean driven
V : variance driven
UCB : GP-UCB

Data
INIT: initial 2 surveys
WINDOW : previous 2 surveys
ALL :  all surveys 

Regret - lowest median 
and variance for GP-
UCB, with all data

Corr. coefficient - GP-
UCB competitive with 
variance sampling, with 
all data



Insights

Target

Input

~35 km
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Learned Algae Model 
Deployment 16/17 - (temperature,backscatter)

GP-UCB
(explorer-exploiter)

Mean-driven
(exploiter)

Variance
(uncertainty)

Mean
(abundance)

Higher backscatter 
(particle size)

Higher temperature 
(near the surface)
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• Goal : Acquire high abundance 
samples of pseudo-nitzschia (PN), 
a potentially toxinogenic algae

• 87 analyzed samples from October 
2010 CANON experiment used to 
learn niche model for pseudo-
nitzschia

• Cross-validation to pick input 
variables and kernel parameter

• Mission in north Monterey bay to 
acquire 9 samples (1 gulper non-
functional)

Field Trial

 68



Prediction (mean) Uncertainty (variance)
Trained PN Model

circle size proportional to measured abundance  69



Samples Acquired
surface
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fluorescence temperature PN abundance

Samples Acquired

Control samples due to (random) triggering at segment 
end

PN 
abundance

(Optical Density)

AUV in-situ sample count (time)stopping parameter r = 3
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Ex-situ Sample  
Analysis

measured PN seriata 
from morphological analysis 

after the experiment

predicted PN seriata 
from model trained on molecular analysis data 

before the experiment

Gulp number Gulp number
 72



Organism 
niche

 model

Adaptive water sampling
Lab 

analysis

[z1, z2, ... ] [b]

Sampling 
Policy

Training data

Summary

relearn organism abundance model
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Accurate estimation 
of fruit count and sizes

Yield
Labor and storage 
planning, harvest timing, 
pricing

Platforms

Harnessed camera stabilizer
UAV

Dense 3-D reconstruction of canopy 

Morphology
Leaf area, canopy height, pruning 
management 

Detection and monitoring of 
crop stress and disease

Health
Water, fertilizer, and 
herbicide management 

Crops Citrus, watermelon, apples, grapes

Versatile, self-contained, lightweight sensor suite

All-terrain vehicle (ATV)

Precision Agriculture 



!75

GPS + Inertial 
Measurements

Thermal

Stereo Vision Pair

LiDAR

NDVI + RGB  
670nm and 800nm cameras

Specifications:  
• 1.5kg mass w/mountings 
• Fits in a shoe box  
• Under $20k to prototype  
• Battery powered

Precision Agriculture 
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J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. 
Kumar, “Devices, systems, and methods for automated monitoring enabling 
precision agriculture,” in 2015 IEEE International Conference on Automation 
Science and Engineering (CASE). IEEE, Aug 2015, pp. 462–469.

3-D Reconstruction
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J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. 
Kumar, “Devices, systems, and methods for automated monitoring enabling 
precision agriculture,” in 2015 IEEE International Conference on Automation 
Science and Engineering (CASE). IEEE, Aug 2015, pp. 462–469.

3-D Reconstruction
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J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. 
Kumar, “Devices, systems, and methods for automated monitoring enabling 
precision agriculture,” in 2015 IEEE International Conference on Automation 
Science and Engineering (CASE). IEEE, Aug 2015, pp. 462–469.

3-D Reconstruction



Sun

3D thermal data overlay

Individual tree 
reconstruction

3-D reconstruction

!77

3-D Reconstruction



Leaf Area Index

Automatic Extraction of Leaf Area



R-square=0.82

Leaf Area Analysis



Booth Ranches, California (citrus)

Crop Stress  80

J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. 
Kumar, “Devices, systems, and methods for automated monitoring enabling 
precision agriculture,” in 2015 IEEE International Conference on Automation 
Science and Engineering (CASE). IEEE, Aug 2015, pp. 462–469.
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• Automatic fruit counting 
using low SWaP 
technologies and deep 
learning 

• https://annotate.label.ag - 
open-source annotation 
tool
• 22 labelers, 5000+ 

labeled images in two 
weeks

• dataset released! 
https://label.ag

• Allows growers to quickly 
annotate data, train 
models, and deploy on 
their own

Fruit Counting �81

http://annotate.label.ag
https://label.ag
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Fruit Mapping

Xu Liu, Steven W. Chen, Shreyas Aditya, Nivedha Sivakumar, Sandeep 
Dcunha, Chao Qu, Camillo J. Taylor, Jnaneshwar Das, and Vijay 
Kumar, "Robust Fruit Counting: Combining Deep Learning, Tracking, 
and Structure from Motion", in International Conference on Intelligent 
Robots and Systems (IROS) 2018
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Rock trait mapping



Rock trait mapping

training set human annotation



500m

Rock trait mapping





Rock trait mapping

Mask RCNN results



Rock trait mapping



Rock trait mapping
Removing tile boundaries



Rock trait mapping

Filtering



Rock trait mapping

Major-axis orientation

ellipse fitting

Major-axis length Major-axis orientation





Rock trait mapping



Rock trait mapping
zoomed in~80,000 rocks

500m
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Environmental probe 

Air, soil, pest sample collection  

High dwell-time (hours to days) 

Physical Sample Collection 
Phytobiopsy  

Leaf samples for ex-situ analysis 

Low dwell-time (seconds)



Aerial 
Phytopathology

Aerial  
Phytobiopsy

• S. K. Sarkar, J. Das, R. Ehsani and V. Kumar, ”Towards autonomous phytopathology: Outcomes and 
challenges of citrus greening disease detection through close-range remote sensing,” 2016 IEEE International 
Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5143-5148.  

• D. Orol, J. Das, L. Vacek, I. Orr, M. Paret, C.J. Taylor, V. Kumar, ”An aerial phyto- biopsy system: Design, 
evaluation, and lessons learned,” 2017 International Conference on Unmanned Aircraft Systems (ICUAS), 
Miami, FL, USA, 2017, pp. 188-195.
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Conference on Robotics and Automation (ICRA), Stockholm, 2016, pp. 5143-5148.  
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Aerial Phytobiopsy

Samples retrieved during experiments

D. Orol, J. Das, L. Vacek, I. Orr, M. Paret, C. J. Taylor, and V. Kumar, “An aerial 
phytobiopsy system: Design, evaluation, and lessons learned,” in 2017 International 
Conference on Unmanned Aircraft Systems (ICUAS), June 2017, pp. 188–195. 



Cory & McKnight (2005) 

Fluorescence Spectroscopy Reveals Ubiquitous Presence of 
Oxidized and Reduced Quinones in Dissolved Organic Matter

USD 14,000

UV Fluorescence Spectroscopy for Biogeochemical Mapping

Excitation-emission matrix (EEM)
quinone, amino acid



USD 4,000

OceanOptics FLAME UV-VIS
Spectrometer

UV Fluorescence Spectroscopy for Biogeochemical Mapping
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L. Vacek, E. Atter, P. Rizo, B. Nam, R. Kortvelesy, D. Kaufman, J. Das, and 
V. Kumar, “sUAS for deployment and recovery of an environmental sensor 
probe,” in 2017 International Conference on Unmanned Aircraft Systems 
(ICUAS), June 2017, pp. 1022–1029.

Probe Deployment and Recovery



DJI F450 
frame

Pixhawk flight 
controller, PX4 
flight stack

uBlox NEO-7 GPS, and compass module 

DJI E310 
propulsion 
system 

Intel NUC i5 Skylake, 
16GB RAM, 
250GB SSD 
Ubuntu 16.04LTS, 
ROS

Front and down cameras, 
90fps, global-shutter, 
exposure and gain control, 
ROS drivers 

Downward-facing 
Garmin LiDARlite v3 
laser rangefinder

Ubiquiti Networks 
high-quality airMAX 
wifi link

45cm

UAV with battery = 2 Kg
probe ~300g
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Simulations = gentle failures
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Docker 
containers 

OpenUAV 
server 

Internet

M. Schmittle, A. Lukina, L. Vacek, J. Das, C. P. Buskirk, S. Rees, J. Sztipanovits, 
R. Grosu, and V. Kumar, “OpenUAV: A UAV Testbed for the CPS and Robotics 
Community,” in 2018 International Conference on Cyber-Physical systems 
(ICCPS) !112

Swarm Testbed



The Annotation Game

Chelsea Scott, Ramon Arrowsmith 

Hannah Kerner

Sampling

Analysis

In-situ Ex-situ

measurement specimen

features big-data



Chelsea Scott, Ramon Arrowsmith 

Hannah Kerner

Grain size

Count

The Annotation Game



Where might AI help? 
What are the challenges?  

Precision agriculture 
Geology, volcanology 
Planetary sciences 
Disaster response  
Damage assessment 

Sampling

Analysis

In-situ Ex-situ

measurement specimen

features big-data

Novelty 
Anomaly  
Change 



2019 NSF CPS Challenge, May 14-16, TIMPA Airfield, TUCSON

IMAGINE 

Your friend's quadrotor went down in a large 
field, and a storm is coming in.  

Looking for this lost drone needs a solution 
that could be repurposed to solve many other 
problems, like looking for a place to deploy an 
environmental sensor probe. 

GOAL 

The goal of this challenge is to use a quadrotor 
aircraft with downward facing camera, and 
possibly other sensors, to scan an area for a 
lost aircraft, and recover it safely back to base. 

•



https://web.asu.edu/jdas    
jdas5@asu.edu

https://cps-vo.org/group/CPSchallenge



https://web.asu.edu/jdas    
jdas5@asu.edu

https://cps-vo.org/group/CPSchallenge


