Curiosity's Mars Hand Lens Imager (MAHLI) in Gale crater

Ken Edgett

Principal Investigator, Mars Hand Lens Imager (MAHLI) Mars Science Laboratory

Malin Space Science Systems February 2017

Edgett-MSL MAHLI-February 2017

Mars Orbiter Camera

Mars Observer & Mars Global Surveyor

Mars Odyssey

We Build & Operate Space Cameras in San Diego

Mast Camera, Mars Hand Lens Imager, Mars Descent Imager

Engineering Cameras

Mars Color Image

Mars Climate Orbiter &

Mars Reconnaissance Orbiter

Lunar Reconnaissance Orbiter Cameras

OSIRIS-REX TAGCAMS

Psyche cameras

Mars 2020 rover

- SHERLOC/WATSON
 - descent cameras

Edgett – MSL MAHLI – February 2017

Mars Reconnaissance Orbiter

THEMIS VIS

Mars Context Imager

4

Edgett – MSL MAHLI – February 2017

Mars 2020 Rover

SHERLOC

<u>detects</u> and <u>classifies</u> organics and "astrobiologically relevant" minerals

SHERLOC

& WATSON

Mars 2020 SHERLOC and WATSON

- SHERLOC Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals
- WATSON Wide Angle Topographic Sensor for Operations and eNgineering

Edgett-MSL MAHLI-February 2017

MAHLI Camera Head

Instrument is typically operated with dust cover fully open. Shown here, it is only halfway open.

1600 x 1200 7.4 µm pixels

Edgett – MSL MAHLI – February 2017

microfilters

Edgett – MSL MAHLI – February 2017

MAHLI 0942MH0001630000303662R00

Mudstone beneath sandstone overhang at Missoula outcrop, Sol 1031

Edgett – MSL MAHLI – February 2017

MAHLI focus merge product 1031MH0004540000400105R00

ATL_MH1012010080000188B00

MAHLI First Opening of Dust Cover – Instrument Check-Out Sol 33 – 9 September 2012

dust cover closed

Transparent cover was coated with a thin film of dust during rover's terminal descent.

dust cover open

Front lens element was clean; protected by dust cover during rover's terminal descent.

Robotic Arm Commissioning & Operation Support

John Klein drill hole – Sol 270 – 10 May 2013

16 mm diameter

MAHLI LEDS

4 White Light LEDs Can control each group of 2 separately 2 UV LEDs (365 nm) To seek fluorescent materials

0809MH0004450030300859C00

composite of 0687MH0004150010203989C00 & 0687MH0004160000203993M80

focus merge product 0688MH0002650000204021R00

MAHLI view of regolith target Maya – Sol 373 – 24 August 2013

Sols 1457-1466: Contact Science Observations MAHLI Observations overlaid in Sol 1466 Left B Navcam

16 mm diameter

MAHLI image 1464MH0003970010503887C00

Down Murray Mudstone Drill holes at Night – same exposure durations

Sol 1436 – Target Conda – Before DRT – APXS and ChemCam Support Context view from ~ 25 cm standoff

Sol 1436 – Target Conda – After DRT – APXS and ChemCam Support Context view from ~ 25 cm standoff

Sol 1436 – Target Conda – After DRT – APXS Support Focus merge product from ~ 5 cm standoff

Rotated 180°

Sol 1436 – Target Conda – After DRT – APXS Support Focus merge product from ~ 1 cm standoff

Rotated 180°

1496MH0002280000504685C00

1496MH0003120010504683C00

Fracture-associated halo in Stimson eolian sandstone

Edgett – MSL MAHLI – February 2017

view toward ~east-southeast, Sol 1381 M-100 mosaic mcam06770

Vandalia (Sol 1143) APXS & MAHLI

Devils Basin (Sol 1120) ChemCam

Edgett – MSL MAHLI – February 2017

1143MH0005340010402182C00

Edgett-MSL MAHLI-February 2017

this is part of the Sol 1342 --- Mastcam-34 mosaic -- mcam6442

1345MH0006150000501782R00 & 1345MH0006150000501780R00

1345MH0006150000501782R00

Bimbe "blocky unit"

boulder with targets Tumba & Funda (conglomerate)

_ rover parking spot, Sols 1405–1410

~25 m

Murray formatio

Murray formation

Murray formation

Edgett – MSL MAHLI – February 2017

cropped from map-projected HiRISE ESP_044172_1755

Tumba

Edgett – MSL MAHLI – February 2017

MAHLI focus merge product 1411MH0005840000502998R00

Curiosity at Buckskin

REMS Meteorology Boom Inspection Sol 1572 – 7 January 2017

Edgett – MSL MAHLI – February 2017

focus merge product 1583MH0006680000601418R00

REMS Meteorology Boom Inspection Sol 1572 – 7 January 2017

Edgett – MSL MAHLI – February 2017

focus merge product 1583MH0006680000601420R00

1603MH0005490010602027C00

Sand motion during MAHLI imaging

3 minutes, ~8 seconds later

Flume Ridge – eolian ripple crest Sol 1603 – 8 February 2017

Edgett – MSL MAHLI – February 2017

1603MH0005490010602038C00

2 mm

(additional slides...)

MAHLI Technical Reports

For more information about MAHLI calibration, characterization, image range and scale, focus merge products, etc.

Report	Title		Date	DOI	
0001	Curiosity's robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status				
	New as of 5-Oct-2015: Equation 2 of Rept 0001 has been corrected; please download the appropriate "Supplementary File" for the		19 Jun 2015	doi:10.13140/RG.2.1.3798.5447 (<u>http://dx.doi.org/10.13140/RG.2.1.3798.5447</u>)	
		New as of 4-Dec-2015: The co http://pds-imaging.jpl.nasa.go		rrected version of the MAHLI Cal Report is also available from NASA PDS: v/data/msl/MSLMHL_0010/DOCUMENT/MAHLI_TECH_REPT_0001.PDF	
0002	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Interplanetary Cruise and Sols 0–89		22 Jun 2015	doi:10.13140/RG.2.1.4442.6403 (<u>http://dx.doi.org/10.13140/RG.2.1.4442.6403</u>)	
0003	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 90-179		25 Jun 2015	doi:10.13140/RG.2.1.2089.5841 (<u>http://dx.doi.org/10.13140/RG.2.1.2089.5841</u>)	
0004	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 180-269		25 Jun 2015	doi:10.13140/RG.2.1.4956.7844 (<u>http://dx.doi.org/10.13140/RG.2.1.4956.7844</u>)	
0005	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 270-359		26 Jun 2015	doi:10.13140/RG.2.1.3580.5286 (<u>http://dx.doi.org/10.13140/RG.2.1.3580.5286</u>)	
0006	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 360-449		26 Jun 2015	doi:10.13140/RG.2.1.4213.3608 (<u>http://dx.doi.org/10.13140/RG.2.1.4213.3608</u>)	
0007	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 450-583		21 Sep 2015	doi:10.13140/RG.2.1.3437.6167 (<u>http://dx.doi.org/10.13140/RG.2.1.3437.6167)</u>	
0008	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 584-707		11 Dec 2015	doi:10.13140/RG.2.1.3569.0329 (<u>http://dx.doi.org/10.13140/RG.2.1.3569.0329</u>)	
0009	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 708-804		14 Dec 2015	doi:10.13140/RG.2.1.3934.6002 (<u>http://dx.doi.org/10.13140/RG.2.1.3934.6002</u>)	
0010	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 805-938		14 Dec 2015	doi:10.13140/RG.2.1.2648.4562 (<u>http://dx.doi.org/10.13140/RG.2.1.2648.4562</u>)	

MAHLI Technical Reports

For more information about MAHLI calibration, characterization, image range and scale, focus merge products, etc.

Report	Title	Date	DOI
0011	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory (MSL) Principal Investigator's Notebook: Sols 939–1062	08 Apr 2016	doi:10.13140/RG.2.1.3569.4488 (<u>http://dx.doi.org/10.13140/RG.2.1.3569.4488</u>)
0012	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory (MSL) Principal Investigator's Notebook: Sols 1063–1159	20 May 2016	doi:10.13140/RG.2.1.4605.2721 (<u>http://dx.doi.org/10.13140/RG.2.1.4605.2721</u>)
0013	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 1160–1293	11 Nov 2016	doi:10.13140/RG.2.2.20528.76808 (<u>http://dx.doi.org/10.13140/RG.2.2.20528.76808</u>)
0014	Curiosity's Mars Hand Lens Imager (MAHLI) Mars Science Laboratory Principal Investigator's Notebook: Sols 1294–1417	31 Jan 2017	doi:10.13140/RG.2.2.27370.52163 (<u>http://dx.doi.org/10.13140/RG.2.2.27370.52163</u>)

"Principal Investigators Notebook" reports correspond to NASA PDS release cycles but also cannot be completed until all data onboard MAHLI, on Mars, has been either downlinked or deleted onboard. Thus, the report corresponding to the most recent PDS release(s) is/are typically not available because some of the data are still onboard the rover.

Mastcam-100 0617MR0026380010401080E01

Edgett-MSL MAHLI-February 2017

comparing dark, gray, "glinty" sandstones at same scale.

Earth – 19 September 2008

Science and Support Services

Science observing

- Images ~14 μ m/pixel to > 100 μ m per pixel; most common images are 16 to 110 μ m/pixel.
- Close-up color imaging of rocks & regolith targets (grain- and bedding- scale texture, structure,)
- Stereopairs / 3D mesh
- Mosaics
- Nested suites in which lower resolution provides context for higher resolution views.
- Context support for other contact science and mast-mounted science observations.
- Curatorial documentation support for extracted sample documentation (vital for making case to return samples).
- Oblique views of core hole walls for geologic context of extracted samples.
- "Dog's eye" views under overhanging rock ledges for stratigraphy investigations.

Science/Engineering Support

- Wheel and undercarriage/belly pan inspections.
- Robotic Arm Commissioning support (images acquired in ATLO and on Mars)
- Range-finding support for sample extraction
- Range-finding support for core hole depth, cuttings pile height, etc.
- Stereo imaging support for corer placement.
- Inspections and diagnostics (e.g., of other instruments or rover hardware to understand a problem or monitor dust accumulation)
- Night illumination options for science or engineering (e.g., on MSL, night imaging is preferred for inspection down CheMin sample inlet).
- Sample extraction site context, traceable up to HiRISE scale, via "rover self portrait".

Capabilities and Options

• Focus range 2.1 cm to infinity

- pixel scale as high as ~14 μm per pixel; MSL typical highest resolution images 16–21 μm /pixel
- Color via Bayer Pattern CCD
 - Can be color-interpolated onboard
- Sub-framing
- Uncompressed, lossless compressed, JPEG lossy
- Onboard focus stack merge (up to 8 images)
- Night imaging with white and 365 nm LEDs
- Stereo, mosaics, nested images via Arm positioning
- Autofocus & Manual Focus
- Auto-exposure & Manual Exposure
- "video" frame rates likely < 2 per second
Some MAHLI Characteristics

bandpass	395–670 nm	
	2.1 cm working distance	infinity
depth of field	1 mm	—
field of view (FOV; diagonal)	34°	38.5°
FOV (horizontal 1600 pixels)	26.8°	31.1°
FOV (vertical 1200 pixels)	20.1°	23.3°
instantaneous FOV (IFOV)	402 <i>µ</i> rad	346 µrad
focal ratio	f/9.8	f/8.5
effective focal length	18.4 mm	21.4 mm

DEA – Digital Electronics Assembly

- 8 GB flash memory, Very enabling!
- We acquire more images than we return to Earth.
 - Onboard focus merge
- We often store images uncompressed.
 - if desired, we can return
 same image more than once with
 different compression.

MAHLI camera head is on turret at end of a ~2 m long robotic arm.

NASA photo KSC-2011-5925

Sol 84 Mastcam-34 image 0084ML0003740000102846E01

Gale Crater

- 5.4°S, 222.3°W
- 155 km diameter
- Mt. Sharp is about
 5 km high
- Landing site elevation is near –4.5 km

Northern Gale Crater Cross-Section

Edgett – MSL MAHLI – February 2017

Sample Extraction Site Selection, Context, Curatorial Documentation

Nested Imaging at Various Spatial Scales

authigenic crystals (pseudomorphs) diagenetic nodules

Mojave-2 – MAHLI focus merge product 0880MH0004620000302350R00

Edgett – MSL MAHLI – February 2017

cm

2812-3942-0

