Facilitating atmosphere oxidation through mantle convection

Kanani K. M. Lee

Tingting Gu (Yale, now GIA), Neala Creasy (Yale), Mingming Li (ASU), Catherine McCammon (BGI), Jennifer Girard (Yale)

August 21, 2018 http://people.earth.yale.edu/profile/kanani-lee/about

Illustration by Richard Bizley

Acknowledgments

T. Gu (Yale, now GIA)

N. Creasy (Yale)

M. Li (ASU)

C. McCammon (BGI)

J. Girard (Yale)

Special thanks to:

Discussions: Z. Du, A. McNamara, N. Planavsky

Technical Help: G. Amulele, Z. Jiang, J. Eckert, M. Rooks, F. Camino, Y. Yang

Synchrotron: V. Prakapenka, C. Prescher, Y. Meng, S. Tkachev

Facilitation of collaboration: CIDER and BurnMan

Outreach Travel: COMPRES

Funding provided by:

NSF CAREER (EAR-0955824), NSF GRFP

Evolution of O₂ in Atmosphere

Ballentine, 2002

Evolution of O₂ in Atmosphere

Lyons et al., 2014

Evolution of O₂ in Atmosphere

Lyons et al., 2014

Earth Structure

http://www.geography.learnontheinternet.co.uk/topics/structureofearth.html

Oxygen Fugacity in the Mantle

Oxygen Fugacity in the Mantle?

What are diamond inclusions telling us about mantle redox spatially as well as temporally?

"Deep" LM inclusions

Kaminsky, 2011, 2015

Methods

- Synthesize LM glasses: differ only in Fe³⁺ content
- LHDAC
- **XRD**: identify minerals, equations of state
- FIB and EPMA: reveal compositions
- Monte Carlo Method: determine abundance
- BURNMAN: Compare with PREM
- CITCOM convection simulations

Starting Sample Synthesis

J95: Javoy, 1995 (Enstatite Lower Mantle Model) **MIX1G**: Hirschmann et al., 2003 (pyroxenite mixture and plausible OIB source

Composition

Mantle Compositions (in mol%)

MgO	SiO ₂	Al ₂ O ₃	CaO	FeO [^]	Molar Mass (g/mol)	Fe ³⁺ /Fe	Reference
36.9	47.3	1.2	1.7	12.9	54.79	0.30 (±0.04)	This study, J95 REDUCED [Gu et al., 2016]
37.1	47.3	1.2	1.6	12.7	54.70	0.35 (±0.04)	This study, J95 OXIDIZED [Gu et al., 2016]
37.1	47.7	1.1	1.7	12.5	54.67	NA	Enstatite Chondrite LM, [Javoy, 1995]
27.1	41.6	13.0	10.3	8.0	60.72	0.11 (±0.03)	This study, MIX REDUCED [Creasy et al., <i>in review</i>]
28.5	40.3	12.9	10.5	7.8	60.35	0.55 (±0.04)	This study, MIX OXIDIZED [Creasy et al., <i>in review</i>]
25.3	46.4	9.1	12.5	6.7	59.18	NA	MIX1G pyroxenite [Hirschmann et al., 2003]
49.4	39.2	2.3	3.3	5.8	51.83	NA	Pyrolite, [McDonough & Sun, 1995]

~700 African elephants → highest pressures in the Earth

Earth's current P/T conditions

Effect of Redox on Mantle Mineralogy: J95

Effect of Redox on Mantle Mineralogy: MIX1G

Reduced Pyroxenite (Fe⁺³/Fe ~ 11%):

Bridgmanite (51%), Calcium perovskite (18%), CF (14%), Alumina (11%), Stishovite (5%), Iron (1%)

Oxidized Pyroxenite (Fe⁺³/Fe ~ 55%):

Bridgmanite (100%)

Creasy et al., under review

Monte Carlo Modeling Mantle Mineralogy

Assumptions used for the reduced MIX1G samples

6 possible phases: Bm, Capv, Cf, Al, Stv, and Fe Si bearing phases: Bm, Capv, Stv Mg bearing phases: Bm, Cf Al bearing phases: Bm, Cf, Al Fe⁰ bearing phases: Fe Fe²⁺ bearing phases: Bm, Cf Fe³⁺ bearing phases: Bm Ca bearing phase: Capv

Unknowns

Distribution of AI between Bm, AI and Cf Distribution of Si between Bm and Stv Distribution of Mg between Bm and Cf Distribution of Fe²⁺ between Bm and Cf Amount of Fe^{2+} disproportionation: $3Fe^{2+} = 2Fe^{3+}+Fe^{0}$

Constraints

- (1) Each mineral is charge balanced
- (2) Self-reduction of iron occurred (we observe the presence of metallic Fe)
- (3) Capv is the only calcium-bearing phase for the MIX RED samples
- (4) Cf phase is a solid solution between $MgAl_2O_4$ and $FeAl_2O_4$
- (5) Use the measured Bm V_0 and existing literature to estimate volume expansion due to cation incorporation
- (6) Assume all Fe³⁺ is incorporated in Bm
- (7) Total Fe³⁺ content cannot exceed 55%
- (8) Metallic iron is present between 0.5 to 1.0% based on EPMA results

Monte Carlo Modeling Mantle Mineralogy, II

Monte Carlo results for estimating the composition of the synthesized MIX_RED: ~3,000 possible compositions from 3 million iterations

Bridgmanite (51%), Calcium perovskite (18%), CF (14%), Alumina (11%), Stishovite (5%), Iron (1%)

Monte Carlo Modeling Mantle Mineralogy, III

Monte Carlo results for estimating the composition of the synthesized MIX_RED: ~3,000 possible compositions from 3 million iterations

MIX_RED Bridgmanite composition:

 $(Mg_{0.84}Fe_{0.06}^{2+}Al_{0.10}Fe_{0.09}^{3+}Si_{0.91})O_3$

Comparing Bridgmanite Compositions

MIX_RED Bridgmanite composition:

$$\left(Mg_{0.84}Fe_{0.06}^{2+}Al_{0.10}Fe_{0.09}^{3+}Si_{0.91}\right)O_{3}$$
$$V_{0} = 163.6 \ (\pm 0.5) \ \text{\AA}^{3}$$

MIX_OX Bridgmanite composition:

Comparison with PREM

Creasy et al., under review; Gu et al., Nature Geo, 2016

Effect of Redox on Mantle Mineralogy

Reduced samples:

- 1. More complex mineralogy
- 2. Greater assemblage density

Oxidized samples:

- 1. Mostly bridgmanite
- 2. Lower assemblage density
- 3. Solid solution between Mgand Ca-silicate perovskites

Geodynamic Modeling

Gu et al., Nature Geo, 2016

Geodynamic Modeling

Gu et al., Nature Geo, 2016

Evolution of upper mantle

Evolution of upper mantle

Gu et al., Nature Geoscience, 2016

What could this all mean?

90

Reduced, dense, *primordial* piles?

Summary

- Crystal chemistry in bridgmanite varies under different redox conditions influencing mantle mineralogy, density, seismic velocities and convection.
- More oxidized samples (high Fe³⁺/ΣFe), yield simpler assemblages and are less dense than their more reduced counterparts by ~1-2%.
- While there are several possible chemical models of the lower mantle, bridgmanite is nevertheless considered the dominant phase in the lower mantle; thus, its crystal chemistry has a leading role in the thermochemical evolution of the mantle (*and exosphere!*).

What comes next?

- How does Ca incorporation into bridgmanite affect partitioning of other large-ion lithophile elements (e.g., K, U, Th)?
- How are melting relations affected by redox state?
- What are the observables that can further test this hypothesis?
- What might this mean for planets beyond Earth, both within and outside of the Solar System?

