

Science at Low Frequencies with the Long Wavelength Array

Greg Taylor (UNM) On behalf of the LWA Collaboration

ASU, 3/29/2017

Science at Low Frequencies II, held in Albuquerque NM Dec 2-4, 2015. 105 attendees from around the world.

Follow-up from SLF I in Tempe (2014)

LWA1

10-88 MHz usable Galactic noise-dominated (>4:1) 24-87 MHz 4 independent beams x 2 pol. X 2 tunings each ~16 MHz bandwidth All sky (all dipoles) modes: TBN (70 kHz-bandwidth; continuous) TBW (78 MHz-bandwidth, 61 ms burst) World class facility, now observing jointly with VLA Five "outrigger" antennas at up to 500 m baselines LWA1 discoveries: meteors, pulsars, Sun, Jupiter & Ionosphere Open skies – LWA1 is funded by NSF as a University Radio Observatory

LWA-SV station

- New station as part of the Long Wavelength Array
- 257 dual polarization LWA dipoles
- 20 MHz bandwidth beamforming
- 20 MHz bandwidth all-sky imaging
- 70 km baseline provides 10" resolution in conjunction with LWA1

LWA Technology

Construction

- Site/Power/Coms/Shelter
- Trenching & Conduit for Cabling
- Antenna Installation
- Cable Installation

 Receivers, Digital Processor, Data Recorders, Electronics

How to Build an LWA antenna

Animals at LWA1

LWA Science

Astrophysics

Cosmology Observing cosmic dawn through redshift 30 absorption of the 21 cm line. High redshift radio galaxies, containing the earliest black holes

 Acceleration, Propagation & Turbulence in the ISM

Origin, spectrum & distribution of Galactic cosmic rays, Supernova remnants & Galactic evolution, Pulsars and their environments

- Solar Science & Space Weather COSP Jupiter, Radio heliography of solar bursts & coronal mass ejections, Solar magnetic fields
- Exploration of the Transient Universe New coherent sources, GRB prompt emission, poorly explored parameters space ...
- Meteors
 Self-emission and reflections of man-made signals

Iono- & Atmospheric Physics

- Unprecedented continuous spatial & temporal imaging of the ionosphere
- Test and improve global ionospheric models
- High-time-resolution Imaging
 of Lightning

Cosmic Ray Physics

Your ideas?

All of LWA1 time is open skies. Your observing proposals are welcome!

Dowell et al.

2017

40 MHz

+ New Low Frequency Sky Model generator

LWA 1 Science Program: Dark Ages

The predicted brightness temperature of the 21cm line from the HI gas is displayed as a function of time, redshift & frequency.

Figure 1 from Pritchard & Loeb, 2010 Nature 469 772

The Dark Ages through Cosmic Dawn encompasses the formation of the 1st galaxies & black holes. LWA1 offers a unique window into this era.

- •LEDA (PI Greenhill): Constrain Dark Ages signal
 - Probe thermal history & Lyα output of 1st stars & galaxies by characterizing HI trough – only means to detect IGM @ z >15
 - New correlator, total power hardware & data reduction pipeline

LEDA –outriggers for LWA1

Construction of 4 additional outriggers.

LEDA: Inference

Lyman-α photon production (likely from stars) determines magnitude of decoupling from the

Production of ionizing photons determines the difference between dash-dot and solid curves

Case where IGM not reheated prior to reionization. It takes just 10⁻³ eV per baryon to significantly change this curve.

LWA OVRO

Jupiter

Jupiter

Juno at Jupiter

Exoplanets

- Possibility of detecting exoplanets and exomoons
- Allows measurement of the magnetic field strength and rotation periods
- How strong is the emission?
 - Jupiter bursts are up to 1 GigaJansky at 5 AU
 - Expect ~6 milliJy signal at 30 MHz at 10 parsecs
- But how exceptional is Jupiter?

From our Jupiter ...

SJ 53

.. Extrapolating to Hot Jupiters

Emission from Hot Jupiters

- Low frequency: eB / $2\pi m_e = 28$ MHz at 10 G
- Bright!
 ~100 mJy fluxes predicted
 (but less than confusion)
- High circular polarization: LWA1 is very good at this!
- Predictably time-variable:
 - pulsar-like emission
 - secondary eclipses
 - periastron passages of high-eccentricity HJs

PASI image of a Jovian burst at 25.61 MHz

LWA1 Pulsar Detections

Dispersion of a Pulse

LWA1 Pulsar Detections

J0030+0451 B0031-07 J0034-0534 B0138+59 J0203+70 B0320+39 B0329+54 B0355+54 B0450+55 B0525+21 B0531+21* B0628-28 B0655+64 B0809+74 B0818-13 B0823+26 B0834+06 B0919+06 B0943+10 B0950+08 B1112+50

B1133+16 B1237+25 J1327+34B1508+55 B1540-06 B1541+09 B1604-00 B1612+07 B1642-03 B1706-16 B1749-28 B1822-09 B1839+56 B1842+14 B1919+21 B1929+10 B2020+28 B2110+27 J2145-0750 B2217+47 J2324-05

- 60 Pulsars detected (58 through pulsations, 2 through single pulses)
- 3 MSPs detected
- Periods from 1.9ms to 3.7s

DM Variations

Solar System Electron Density

Rotation Measure Fitting

PSR B0950+08 RM_{um} = 2.36(4) RM_m = 1.2(1) RM_{or} =1.2(2) PSR B1133+16 RM_{uters} = 4.61(1) RM_{ter} = 0.84(4) RM_{or} = 3.77(5)

Coronal Mass Ejection

Catching a Coronal Mass Ejection

Howard et al 2016

34

Catching a Coronal Mass Ejection

Catching a Coronal Mass Ejection

Meteors – by reflection

2014-06-18 02:59:54

Great Balls of Fire!

Obenberger et al. 2014, 2016

Light curves of the brightest transients

Expanded LWA - Demonstration

New 4 band feeds (MJP) 4 meter band: 50-86 MHz

9/17/2015: 3C196 6 VLA + LWA1 35 minutes 72 - 80 MHz Correlated using the LWA Software Library

ELWA - Demonstration

3C196 Peak ~ 100 Jy Noise ~ 200 mJy SEFD ~ 8000 Jy LWA1 SEFD ~ 25000 Jy ea14, ea10

Resolution increased by factor of 250!

$16 \ VLA + LWA1 + LWA-SV_{UV \ Coverage \ for \ svout}$

ELWA - Demonstration

3C84 Dec 3, 2016 LWA1 + 13 VLA

ngVLA Option: Commensal Low Frequency Science

LWA: all sky plus beams

VLITE: >50% of sky in 1 year

- Current infrastructure:
 - VLITE + LWA => Low Band
 Observatory (LOBO)
- Future: Leverage ngVLA infrastructure (land/ fiber/power) for commensal low frequency capabilities (ngLOBO)
- 5 150 MHz: multi-beam dipole arrays alongside ngVLA long-baseline stations (e.g., LWA style).
- 150 800 MHz commensal prime focus feeds on ngVLA antennas (e.g., VLITE style)
- Science: efficiently exploring the entire low frequency Universe with (almost) "free photons" so transients, pulsars, space weather, exo-planets, ...

LWA Future

• 10-88 MHz Aperture Synthesis Telescope • 4 beams x 2 pol. x 2 tunings x 16 MHz • 2 all-sky transient obs. modes LWA1 State of New Mexico, USA

82

- Goal of 50 LWA stations, baselines up to 400 km for resolution 2" at 80 MHz with mJy sensitivity
- Cost is ~\$1M/station

Summary

- LWA1 has demonstrated technical feasibility and scientific results
- Lots of exciting science at low frequencies. Progress requires:
 - High temporal, spectral, and spatial resolution
 - Sensitivity
 - Software development
- Current experiments are providing new hardware and software, and a better understanding of the sky at long wavelengths
- We have begun the next phase interferometry with LWA and VLA stations
- What would you do with a Million Dollars?

Using Pulsars to compare sensitivity

LWAI Compared to LOFAR Int'l Station

PSR B1919+21

- Test observation on Nov 03rd 2016, 20 min
- 12 antennas (A config.) + LWA1
- 16 MHz bandwidth/4 bit

VLA ant 18 25m dish with MJP

LWAI 256 dipoles vs.

Figure 4: Spectrum using the TBW capture mode for 20 dipoles phased at zenith for 24 hours. The time and frequency variation of the background are real; the contribution of the active antenna appears as a steep role-off below 30 MHz. Note that 30-88 MHz is always useable, and even frequencies as low as 13 MHz are usable for a few hours each day.

Lightning

Solar Interference

Watch out for the Active Sun

"Type III" burst at RSTN (3 seconds, 0.15 MHz)

Comparison to other instruments

LWA1 has sensitivity ~25% of all of LOFAR-LBA

11.09.2014