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Uplink commands Downlink data
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Collect data



What have we 
learned?

MSL: 905K Mastcam, 1.7M Hazcam, 8.2M 
Navcam
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MSL Data Archive

…

2000+ per-sol summaries of data collected
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What if I want to know:
● Which targets contain fluorine?
● Which targets contain hematite?
● Is there consensus on target X’s composition?

HELP!



Mars Target Encyclopedia
● Collect all published knowledge about 

every target on Mars
● Provide search access
● Answer questions 
● Inspire new investigations and 

hypotheses
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Can computers do the reading?

12From flickr user Atomic Taco (CC BY-SA)



Can computers do the reading?
● How hard is it?
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[Johnson et al., 2016]

Mountain in CA

Resort in MT,
2015 movie

“Hedging”



Can computers do the reading?
● How hard is it?
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[Johnson et al., 2016]Not even in the same sentence!



The documents
● Lunar and Planetary Science 

Conference
◦ Three years
◦ 5,920 documents
◦ 2-page abstracts
◦ 7.2M words
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Mars Target Encyclopedia
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1. Find Targets, Elements, Minerals
● Use known lists
◦ What about newly discovered targets?

● Machine learning
◦ Given example texts, learn word patterns
● “The Big Sky tailings were spectrally flat…” 
◦ Stanford CoreNLP system [Finkel et al., 2005]
●Word sequences, parts of speech, word “shape”
●ML: Conditional Random Field (CRF) model
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2. Find relationships
● Predict whether there is a “contains” relation 

for each [Target, Element] or [Target, Mineral] pair
● Machine learning: jSRE [Giuliano et al., 2006]
◦ Words, positions, endings, parts of speech
◦ ML: Support Vector Machine (SVM) model
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Relation extraction performance
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Mars Target Database
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Content type Manual
Documents 118
Elements 2,224
Minerals 1,456
Targets 916
Relations 696
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Mars Target Database
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Content type Manual Automatic
Documents 118 5,920
Elements 2,224 48,614
Minerals 1,456 34,287
Targets 916 3,255
Relations 696 1,412
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Mars Target Database
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Content type Manual Automatic
Documents 118 5,920
Elements 2,224 48,614
Minerals 1,456 34,287
Targets 916 3,255
Relations 696 1,412

Time (per document) ~30 mins ~5 seconds



Manual review of relations
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• Relations from non-training documents
• ~5 sec per document
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Example extractions – correct 
● Link contains potassium
◦ “Link, which was one of the first K-rich 

conglomerate targets observed with ChemCam, 
whereas felsic group 5 shows a higher Na/K ratio.”

● Link contains hydrogen
◦ “Both of these are good candidates since, in Link at 

least, the hydrogen signature is relatively 
prominent.”

● JK/CB and olivine/magnetite 
◦ “The RN crystalline component is depleted in MgO 

and FeO relative to JK and CB because of the 
absence of olivine and enrichment of magnetite in 
the latter.”
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Example extractions – incorrect 
● Not a target (Mars region)
◦ “While limited detections of phyllosilicates and 

hydrated silica are found in Acidalia and Utopia 
Planitia…”

● Not an element (Fm)
◦ “The results indicate that the dip of the 

Shoemaker Fm impactite section…”
● Meteorite (not Mars, but same name as Mars 

target)
◦ “Finally, the Bilanga diogenite has a model age 

that seems older but still similar within the error 
than basaltic and cumulative eucrites.”
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Map display 
of search 

results

Thanks: Fred Calef (MMGIS)
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Integration with MSL Analyst’s Notebook
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https://an.rsl.wustl.edu/msl/
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Integration with MSL Analyst’s Notebook
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Integration with MSL Analyst’s Notebook
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Integration with MSL Analyst’s Notebook
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https://an.rsl.wustl.edu/msl/
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Integration with MSL Analyst’s Notebook
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https://an.rsl.wustl.edu/msl/



Summary

33Thank you: JPL MGSS program, NASA Planetary Data System, and MSL project.

● Information extraction for 
scientific publications

● Enable searches not 
previously possible

● Facilitate scientific 
progress and exploration 
using artificial intelligence 
methods

● Make discoveries 
accessible to everyone

https://an.rsl.wustl.edu/msl/ 


